
Verify Checklist
Type Description / Pointers

Comments Comments in code may obscure bad naming, long methods, etc. Therefore comments
in code are by default a code smell.

Refactoring:

Extract method

Rename Method / Field

Introduce Assertion

Duplicate Code Duplicated lines in different methods or duplicated methods in different classes, is what
people call duplication, but duplicated object usages (see Feature Envy) is a form of
duplication as well and may be less apparent.

Refactoring:

Extract Method / Class, Pull Up Method, Form template

Conditional
Complexity

Complex conditional statements often grow from a simple if. We should be critical about
conditionals and boolean expressions, as they appear more difficult to read and
maintain than you might expect.

Refactoring:

Replace conditional with Strategy

Move Embellishment to Decorator

Decompose Conditional

Replace State-Altering Conditionals with State

Introduce Null Object

Long Method A long method is hard to understand because of too much detail. They tend to become
linger, introduce hard-to-detect duplication and often suffer from Primitive Obsession.

Refactoring:

Extract Method, Decompose conditional, etc.

Magic Number Magic numbers are literal values that appear in the code. The meaning of the values is
unclear from the code.

Refactoring:

Replace with Symbolic constant

Uncommunicative
name

A name that doesn’t communicate its intent well enough.

Refactoring:

Rename method / class / field / variable

Divergent change If a certain class is often changed for different reasons, the class may have to many
responsibilities

Refactoring:

Extract class

Shotgun Surgery Your code smells when changes affect many classes.

Refactoring:

Move Method / Field. Inline class

Feature Envy A piece of behavior seems more interested in data from another class than its own.

Refactoring:

Move method / Extract method

Inappropriate
Intimacy

Two of more classes that spend a lot of time together. Bidirectional dependencies and
touch their private parts (data).

Refactoring:

Move method / Field, Change bidirectional behavior to Unidirectional

Train Wrecks object.getThis().getThat().getSuch().doThis()

Refactoring:

Extract Method / Move Method / Hide Delegation

Switch statements Switch statements are almost never a good object oriented construct. (procedural)

Refactoring:

Replace Conditional with Polymorphism / Strategy / State / Explicit methods

Indecent Exposure Code that is not important to clients should not be exposed.

Refactoring:

Encapsulate Classes with Factory

Primitive Obsession

Using many primitive types in implementation obfuscates the intent of the
implementation.

Refactoring:

Replace data value with Object

Replace Type code with Class / Subclasses / State / Strategy

Extract Class

